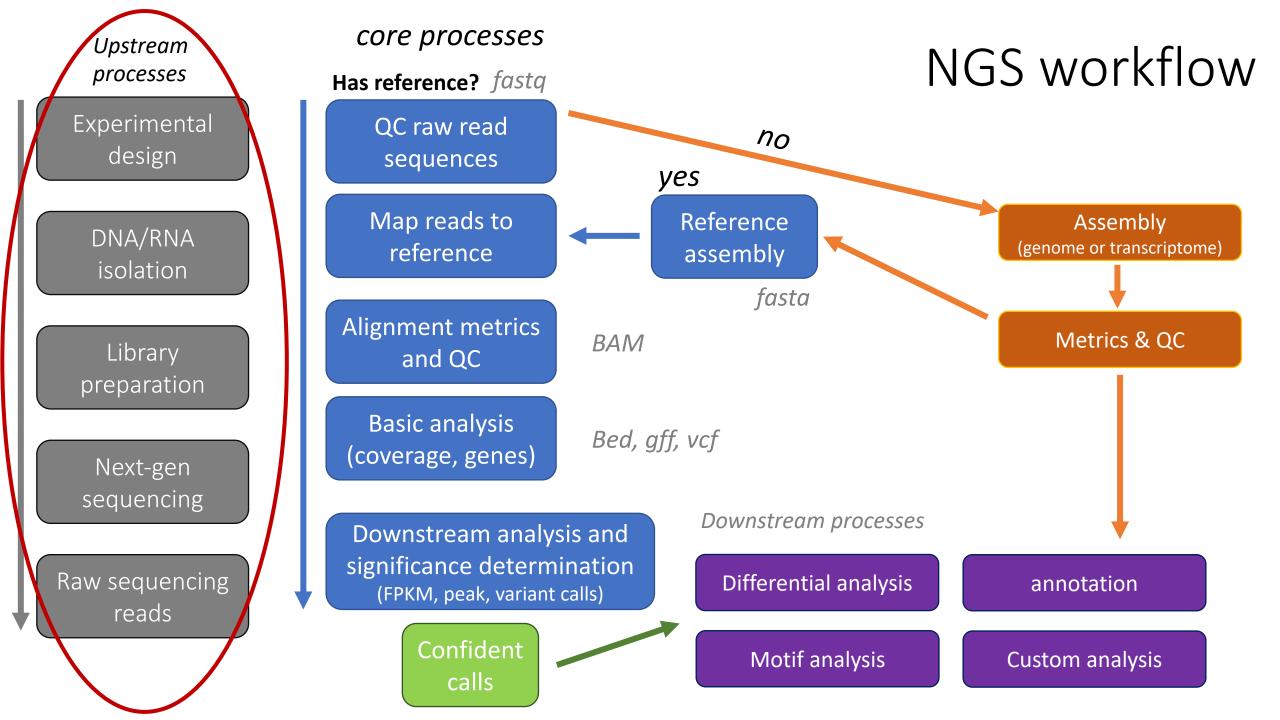
Genomics and Big Data

A brief review of methods and practical utility


Amelia Weber Hall January 2020 Computational Workgroup

With many thanks to Anna Battenhouse (UT Austin) who developed this original lecture back in ~2013

Outline

1. NGS workflow and experiment types

- 2. Read sequence terminology
- 3. The fastq format
- 4. Fastq QC methods
- 5. Alignment to a genome
- 6. Reference genomes: making and using
- 7. Alignment metrics and QC
- 8. UCSC genome browser time!

Common Experiment Types: Genomic DNA

- Whole genome sequencing (WGS)
 - Library: all genomic DNA
 - Uses: Genome assembly, variant calling
 - Variants: methyl-seq
- Whole exome sequencing (WXS, or exome)
 - Library: coding regions (exons and sometimes adjacent regulatory regions)
 - Uses: Polymorphism/SNP detection, genotyping, de-novo variant discovery

Common Experiment Types: transcribed DNA (RNA)

- RNA-sequencing:
 - Bulk:
 - Library: extract all RNA from sample and convert to cDNA
 - All fragments → total RNA → polyDT selection → mRNA → ribozero (remove rRNA)
 - \rightarrow small fragments (miRNA)
 - Uses: differential gene expression, isoform discovery, exitrons, eQTLs (with WGS)
 - Single cell:
 - Library: unique to each cell (UMI), extract all RNA from sample and convert to cDNA
 - Uses: identify new cell types in complex samples such as tissue, many other analyses used for RNA-seq, but at cellular subtype resolution

Common Experiment Types: *NA-protein interactions

- ChIP-seq:
 - Library: isolated DNA bound by proteins (histones, transcription factors)
 - Uses: analysis of regulatory networks, annotating the non-coding genome,
 - Use targeted antibodies to pull down DNA:protein complexes after crosslinking
 - Being supplanted by methods such as ChIPmentation, CUT&RUN, ATACseq
- RIP-seq:
 - Library: isolated RNA bound by proteins (transcription factors, chromatin remodelers, RNA editing proteins)
 - Uses: protein-bound RNAs, RNA regulation and modification after transcription

Uncommon Experiment Types: a grab-bag!

- NET-seq
- GRO-seq
- "C" methods: HiC, 5C, 4C-seq, 3C

Library Complexity

- Is a measure of the number of diverse molecular species in a library
- Many different molecules \rightarrow high complexity
- Few different molecules \rightarrow low complexity
- Expected molecular diversity depends on the enrichment performed during library construction

Library complexity is primarily a function of experiment type

Higher complexity Less enrichment for specific sequences Genomic (WGS) Methyl-seq RNA-seq (no selection) Exome (WXS) RNA-seq (polyA selected) ChIP-seq Amplicons/testing panels

More enrichment for specific sequences

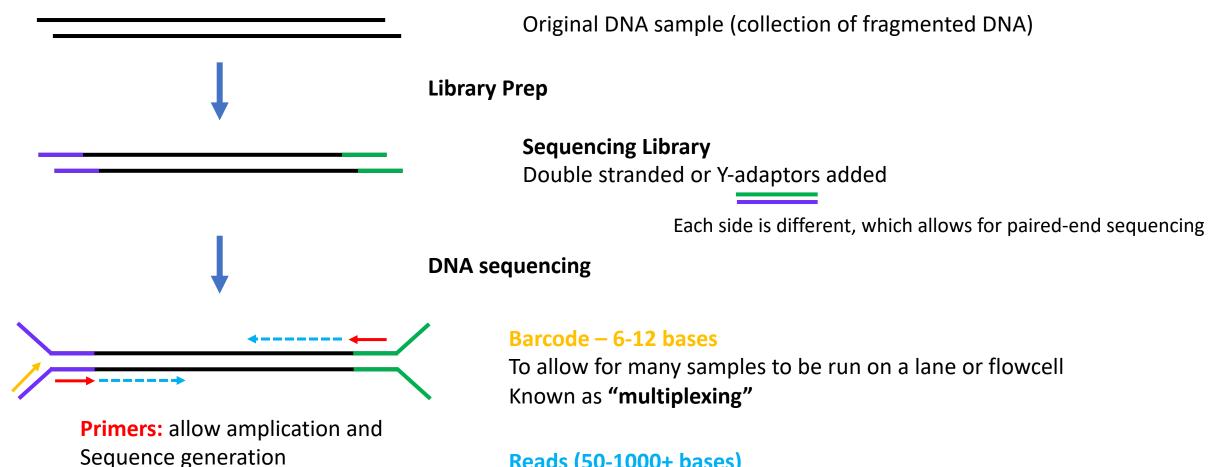
Higher diversity of molecules

Less sequence duplication expected More sequencing depth required

Other factors: Genome size, sequencing depth Method of library prep, luck

Lower diversity of molecules

Higher sequence duplication expected Less sequencing depth required

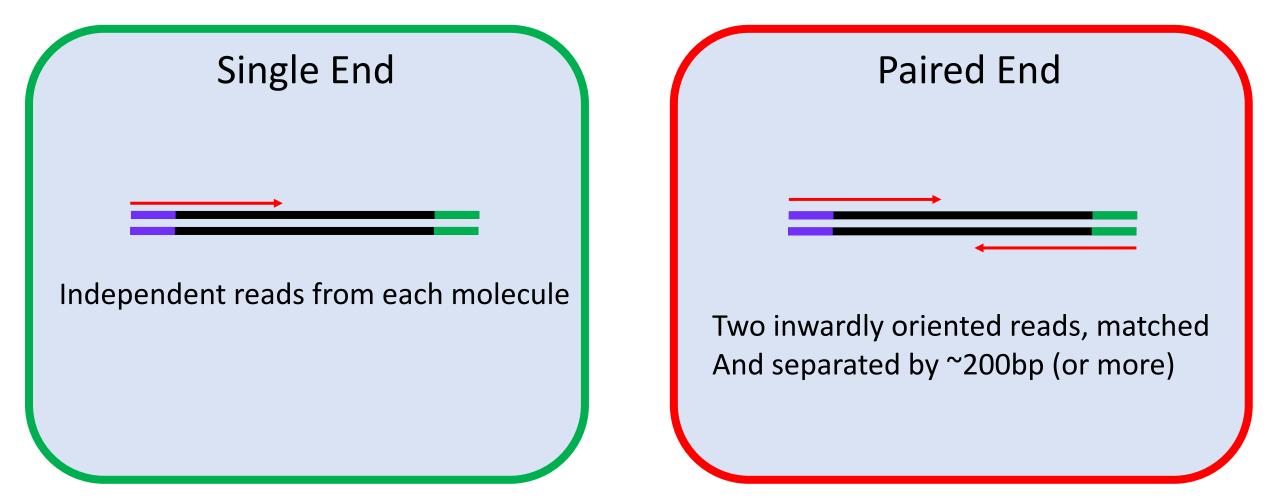

lower complexity

Sequencing Technologies

- Illumina short reads (can go up to 500bp)
 - Two PCR amplifications library preparation, cluster generation
 - Amplification introduces bias!
- Single molecule sequencing
 - Sequencing of single molecules, not clusters
 - High error rate of reads, but much longer reads (multi-kilobase)
 - PACB SMRT-seq system
 - Rolling circle replication, great for
 - Oxford Nanopore
 - Great for field applications, no refrigeration required, single use

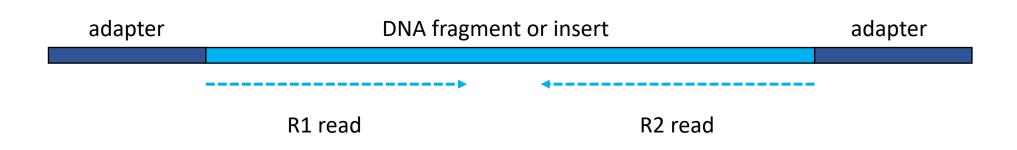
Broad sequencing models and capabilities

Read Sequence Terminology


Reads (50-1000+ bases)

Adapters include **primers** (P3/P7 for illumina) and a barcode: check supplier for details (Bioo, NEB, Illumina, others) https://wikis.utexas.edu/display/GSAF/Illumina+-+all+flavors

Outline


- 1. NGS workflow and experiment types
- 2. Read sequence terminology
- 3. The fastq format
- 4. Fastq QC methods
- 5. Alignment to a genome
- 6. Reference genomes: making and using
- 7. Alignment metrics and QC
- 8. UCSC genome browser time!

Types of Illumina Sequencing

Reads and Fragments

- When using paired end sequencing, keep in mind the distinction between:
 - The DNA *fragment* from your library that was sequenced
 - also called an *insert*
 - The *sequence reads* you receive from the sequencing center
 - Called R1 and R2, older school lingo called them "tags"
 - An R1 and it's associated R2 form a *read pair*
 - This represents a readout of all or part of a DNA fragment/insert

Paired end vs Single end read structures

- Single end is more rare due to the reduction in sequencing cost
- Paired end allows for more reliable mapping to a reference genome
 - Especially for lower complexity genomic regions
 - Able to determine actual fragment sizes
 - Allows better identification of duplicates
 - Better assessment of the true complexity of a library

Sequencing depth?

- Variable across sequencing experiments!
- Depends on:
 - Genome size
 - Prokaryotes: kilobases to 1-2 megabases
 - Lower eukaryotes (e.g. yeast) megabases
 - Higher eukaryotes: gigabases
 - Library fragment enrichment
 - Theoretical library complexity
 - Less complex libraries don't need as much depth
 - Desired sensitivity
 - Looking for rare mutations?

Library complexity is primarily a function of experiment type

Higher complexity Less enrichment for specific sequences Genomic (WGS) Methyl-seq RNA-seq (no selection) Exome (WXS) RNA-seq (polyA selected) ChIP-seq Amplicons/testing panels More enrichment for specific sequences

Higher diversity of molecules Less sequence duplication expected *More sequencing depth required*

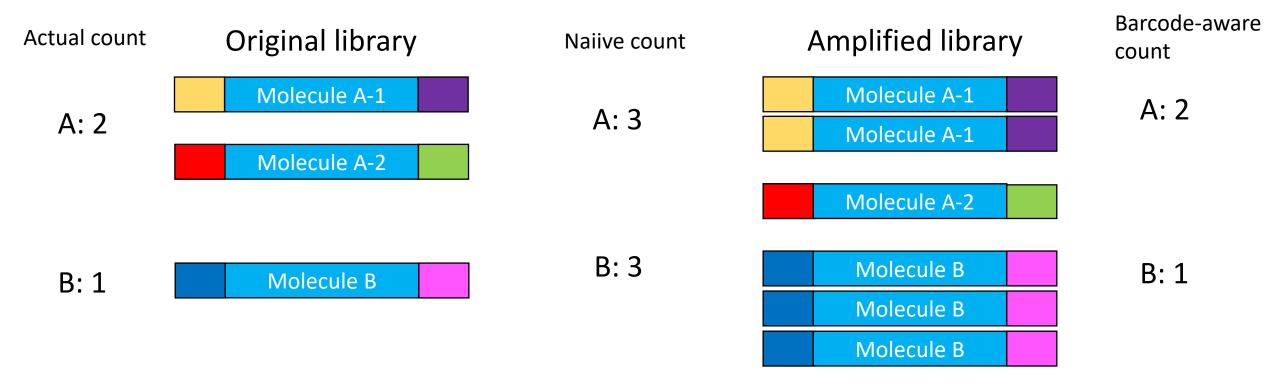
More depth required for large genomes

Lower diversity of molecules Higher sequence duplication expected *Less sequencing depth required*

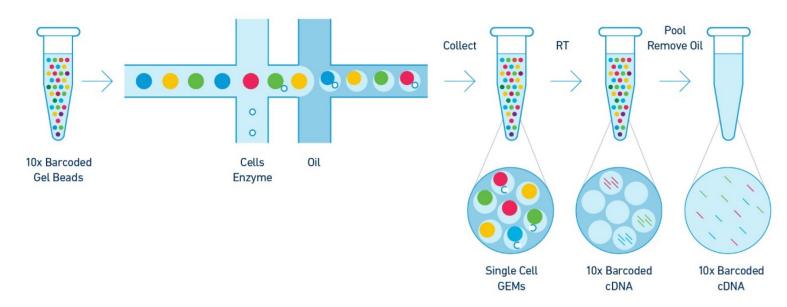
lower complexity

Sequence Duplication

- Sequences from a library can contain exact duplicates
- Duplication can arise from
 - Sequencing of species enriched in your library (biological)
 - Each read comes from a different DNA cluster on the flowcell
 - Sequencing of PCR artifacts (technical)
 - Amplified PCR species (PCR duplicates)
 - Optical duplicates two flowcell clusters overlap
- Current best practice is to "mark duplicates" during the original processing of raw sequence reads
 - Can retain, discard, dose in duplicate reads
- Different experiment types have different expectation of duplication
 - Whole genome \rightarrow high complexity and low duplication
 - Amplicon sequencing \rightarrow low complexity and high duplication


Read vs Fragment Duplication

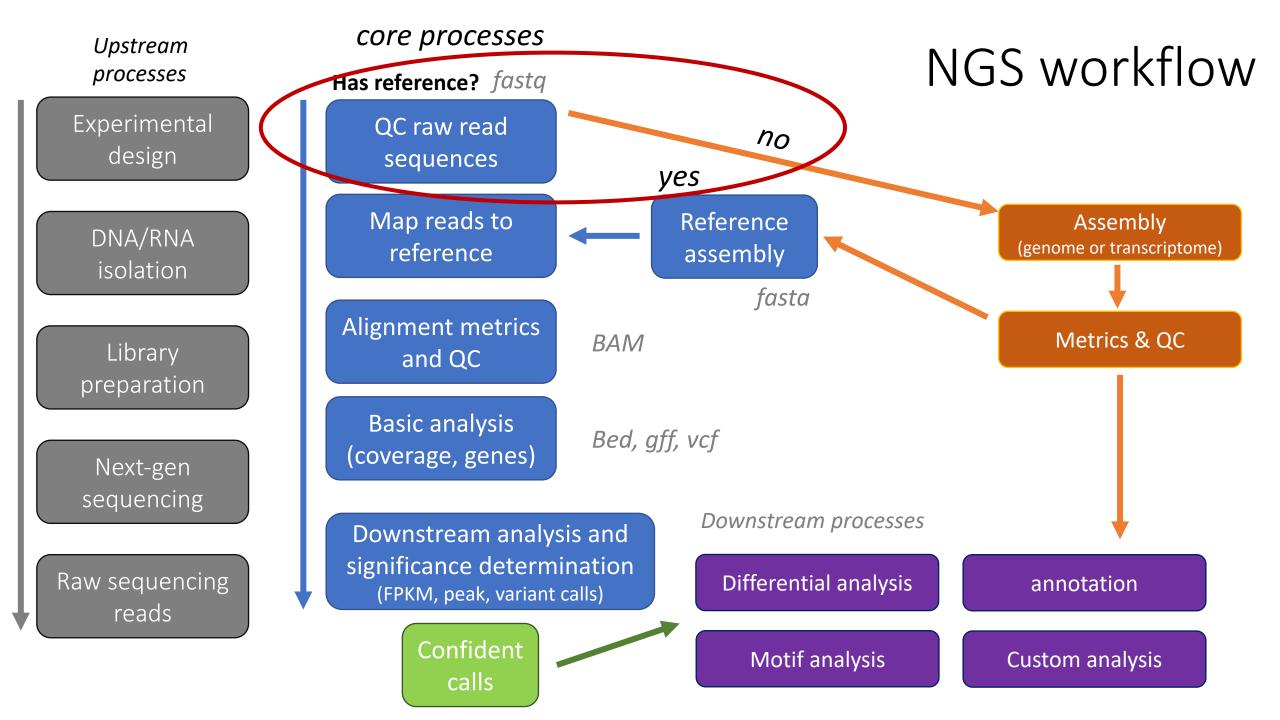
- 4 reads below: which are duplicates?
- Single end duplication: 50%
 - 2 unique and 2 duplicates
- Paired end duplication: 25%
 - 3 unique and 1 duplicate


Molecular Barcoding (important for single cell methods!)

- Resolves ambiguity between biological and technical duplicates
 - Adds secondary barcodes to pre-PCR molecules
 - Barcodes + insert sequence can provide accurate quantification
 - Requires specialized pre and post processing

Single cell Sequencing

- A standard library takes DNA from many cells (thousands to millions)
 - If these cells are not all clones then "bulk" sequencing will not capture the true complexity of the RNA in each cell, and give an average signal
- Single cell sequencing aims to barcode each cell, so the reads from each cell are distinguishable
 - Allows for identification of new subtypes, subtype specific effects in cells



Some barcode/index types

- Library barcode
 - The same for all fragments in a library
 - About 96 available from Bioo, Illumina, NEB
- Molecular barcodes
 - Different small barcodes or pairs attached to DNA fragments before amplification
 - Diversity depends on barcode size and number
 - 4 well separated bases ~80
 - 2 x 4 well separated bases ~700
 - 2 x 8 well separated bases ~500K
 - finding well-separated sequencing compatible barcodes is not trivial
- Single cell barcodes or UMI
 - Unique barcodes generated using beads with 10¹² possible unique molecular indices (UMI)

Outline

- 1. NGS workflow and experiment types
- 2. Read sequence terminology
- 3. The fastq format
- 4. Fastq QC methods
- 5. Alignment to a genome
- 6. Reference genomes: making and using
- 7. Alignment metrics and QC
- 8. UCSC genome browser time!

FASTQ files

- Nearly all sequencing data are delivered as FASTQ files
 - FASTQ = FASTA sequences + Quality scores
 - Tend to have .fastq or .fq extensions
 - Generally compressed to save space (.gz extension)
 - Most tools will handle .fastq.gz files
- Paired end sequencing comes with 2 fastq files:
 - One for R1 and one for R2 same number of rows

1221-C_R1_001.fastq.gz 1221-C_R2_001.fastq.gz

- Order of reads is identical
 - Aligners rely on this identical ordering for paired end alignment

FASTQ format

- Text format for storing and manipulating sequence and quality data
 - <u>https://en.wikipedia.org/wiki/FASTQ_format</u>
- 4 lines per sequence:
 - @readname (generally specific to the sequencer)
 - Called base sequence (ACTGN)
 - Always 5' → 3'
 - + optional read name
 - Base quality scores encoded as text characters

FASTQ read names

- FASTQ readnames from Illumina data record information about the cluster location
 - Unique identifier (fragment name) begins with @
 - Sequencing machine name
 - Lane number
 - Flowcell grid coordinates
 - A space separates the name from extra read information
 - End number: 1 for R1, 2 for R2
 - Two quality fields (N = not QC failed)
 - Barcode sequence
 - This sample is dual indexed!
 - R1/R2 reads *have the same fragment name*

@GWNJ-0842:451:GW1902151877:2:1101:12753:1608 1:N:0:NTTACTCG+AGGATAGG @GWNJ-0842:451:GW1902151877:2:1101:12753:1608 2:N:0:NTTACTCG+AGGATAGG

FASTQ quality scores

- Base qualities expressed as *Phred* scores
 - Log scaled, higher = better
 - $20 = 1/10^2 = 1/100$ errors, $30 = 1/10^3 = 1/1000$ errors

Probability of error = $10^{-0/10}$

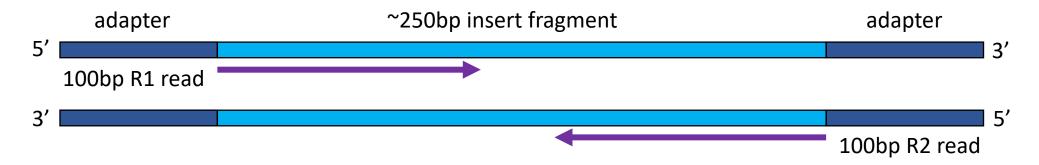
• Integer Phred score converted to ACSII character (add 33)

Quality character	!"#\$%&'()*+,/0123456789:;<=>?@ABCDEFGHIJ				
ASCII Value	33	43	53	63	73
Base Quality (Q)	0	10	20	30	40

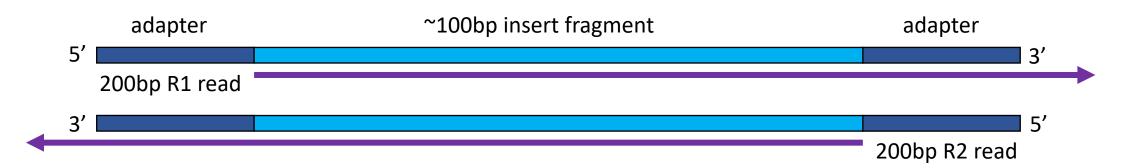
Handling sequencing data across multiple lanes

- For some sequencers (NextSeq) your sample will be split across all lanes
 - So you need to combine the lanes before processing the data for alignment
- Some argue that keeping data separate for as long as possible is best practices, but can also be hard to manage
 - Keep in mind that quality across all sequencing lanes is not necessarily identical
 - If you're having QC issues, try checking each lane separately
 - Keep all original FASTQ files until you've ascertained that alignment is unaffected by lane issues

Outline


- 1. NGS workflow and experiment types
- 2. Read sequence terminology
- 3. The fastq format
- 4. Fastq QC methods
- 5. Alignment to a genome
- 6. Reference genomes: making and using
- 7. Alignment metrics and QC
- 8. UCSC genome browser time!

FASTQ QC and Raw sequence quality control


- Garbage in == Garbage out!
 - If your original sequences are junk, learn this as fast as possible, so you don't waste time on processing!
- General considerations:
 - Sequence quality distributions
 - Duplication rate
 - 3' adapter sequence trimming?
 - Can be important for RNA-seq (but mostly with shorter reads)
 - Contaminants?
 - Ribosomal RNA, cross-sample contamination (rare at Broad)
- Know your data:
 - Broad walkup processing pipelines (all hg19 oriented)

3' adapter contamination

Condition A: reads shorter than insert length (no contamination)

Condition B: reads longer than insert length (contamination risk)

The presence of 3' adapter information in the read is problematic because it can cause problems with genome alignment

FastQC: quality assurance tool for FASTQ

- Quality assurance tool for FASTQ sequences
- Accessible on prem as a dotkit
 - .fastqc-0.11.4 .fastqc
- Input:
 - FASTQ files
 - Run on R1/R2 files
- Output
 - Directory with html and txt
 - Fastq_report.html
 - Fastqc_data.txt

Most useful FastQC reports

- Should I trim low-quality bases?
 - Per base sequence quality report
 - Based on all sequences
- Do I need to remove adapter sequences
 - Overrepresented sequences report
 - Based on first 100K sequences, trimmed to 75bp
- How complex is my library?
 - Sequence duplication levels report
 - Estimate based on first 100K sequences

FastQC resources

- FastQC website:
 - <u>http://www.bioinformatics.babraham.ac.uk</u>
- FastQC report documentation:
 - <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20</u> <u>Modules/</u>
- Good Illumina dataset:
 - <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html</u>
- Bad Illumina dataset:
 - <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.ht</u>
- Adapter contamination in RNA-seq example:
 - <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-Seq_fastqc.html</u>

Dealing with 3' adapters

• Three main options:

- 1. Hard trim all sequences by a specific amount
- 2. Remove adapters specifically
- 3. Perform a local alignment (vs global)

Hard trim all sequences by a specific amount

• E.g. trim 100 base reads to 50 bases

• *Pro:*

- Can eliminate vast majority of adapter contamination
- Fast, easy to perform
- Low quality 3' bases also removed
- Con:
 - Removes information you may want
 - e.g. splice junctions for RNAseq, coverage for mutation analysis
 - Not suitable for very short library fragments
 - e.g. miRNA libraries

Remove adapters specifically

• Pro:

- Can eliminate vast majority of adapter contamination
- Minimal loss of sequence information
 - still ambiguous: are 3'-most bases part of sequence or adapter?
- Con:
 - Requires knowledge of insert fragment structure and adapters
 - Slower process; more complex to perform
 - Results in a heterogeneous pool of sequence lengths
 - can confuse some downstream tools (rare)
- Specific adapter trimming most common for RNA-seq
 - most transcriptome-aware aligners need adapter-trimmed reads

FASTQ trimming tools

- Tools: (none of these are on prem ↔)
 - cutadapt https://code.google.com/p/cutadapt/
 - **trimmomatic** http://www.usadellab.org/cms/?page=trimmomatic
 - FASTX-Toolkit http://hannonlab.cshl.edu/fastx_toolkit/
- Features:
 - hard-trim specific number of bases
 - trimming of low quality bases
 - specific trimming of adapters
 - support for trimming paired end read sets (except FASTX)
 - typically, reads less than a specified length after trimming are discarded
 - leads to different sets of R1 and R2 reads unless care is taken
 - aligners do not like this!
- cutadapt has protocol for separating reads based on internal barcode

Perform a local alignment (vs global)

- Global alignment
 - requires query sequence to map *fully* (end-to-end) to reference
- Local alignment
 - allows a *subset* of the query sequence to map to reference
 - "untemplated" adapter sequences will be "soft clipped" (ignored)

global (end-to-end) alignment of query *local* (subsequence) alignment of query

CACAAGTACAATTATACACCTAGCTTATCGCCCTGAAGGACTTACATACAAGTACAATTATACACAGACATTAGTTCTTATCGCCCTGAAAATTCTCC

reference sequence

Perform a local alignment

• Pro:

- mitigates adapter contamination while retaining full query sequence
- minimal ambiguity
- still ambiguous: are 3'-most bases part of sequence or adapter?

• Con:

- not supported by many aligners
- e.g. not by the **tophat** or **hisat2** splice-aware aligners for RNAseq
- slower alignment process
- more complex post-alignment processing may be required
- Aligners with local alignment support:
 - bwa mem
 - bowtie2 --local

Library duplication is primarily a function of experiment type

Higher complexity Less enrichment for specific sequences Genomic (WGS) Methyl-seq RNA-seq (no selection) Exome (WXS) RNA-seq (polyA selected) ChIP-seq Amplicons/testing panels

More enrichment for specific sequences

Higher diversity of molecules *Less sequence duplication expected* More sequencing depth required

More depth required for large genomes

Lower diversity of molecules *Higher sequence duplication expected* Less sequencing depth required

lower complexity

Outline

- 1. NGS workflow and experiment types
- 2. Read sequence terminology
- 3. The fastq format
- 4. Fastq QC methods
- 5. Alignment to a genome
- 6. Reference genomes: making and using
- 7. Alignment metrics and QC
- 8. UCSC genome browser time!